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We derive a finite-dimensional Hamiltonian dynamical system, projecting the Euler equations onto a basis
composed of six wave vectors closed into a tetrahedron with equal edges. We obtain a system of twelve
equations for complex amplitudes of the flow, with three integrals of matid’s ), namely, the energyH),
helicity (H), and an additional one related to the squared angular momentum. The system admits reduction to
six complex equations and finally to six real ones for three positive-helicity and three negative-helicity modes,
which is theminimumdynamical system to approximate the three-dimensional Euler equations. We simulate
the latter system numerically and demonstrate that it is partly chaotic despite having the same three IM’s in its
six-dimensional phase space. The simulations reveal that the dynamics is fully chaotic in some region of the
phase space, while in another region it is mixed: at the same set of values of IM’'s, some trajectories are chaotic
and some are regular. A chart showing the fully chaotic and mixed regions is obtained, in the first approxi-
mation, in the space of the IM’s values. To quantify the chaos, we compute the mean Lyapunov efpenent
A characterizing the local instability of the trajectories. We find thas nearly independent of the choice of
the trajectory at fixed values of IM’s in the fully chaotic region, i.e., this region appears to be ergodic.
Generally, the system is “most chaotic” at zero helicity and it is apt to become “less chaotic” with an
increase oH/E. We demonstrate, in accord with this, thiatis a monotonically decreasing function df E
in the chaotic region, but inside the region of the mixed behavior the dependence is not monotonic. We also
report some results obtained for a more general system of six complex equations. A preliminary inference is
that there is no drastic qualitative difference from the system of six real equations, though a (cleangasg
of LE can be conspicuous. A simple dissipative generalization of the model is considered too.
[S1063-651X97)04409-7

PACS numbdrs): 05.45:+b, 47.27.Eq

[. INTRODUCTION However, the decomposition based on the curl eigenflows
was not used i3] for the derivation of an actual DS to
Attempts to approximate turbulent flows by finite- model the turbulence. Steps in this direction will be made in
dimensional dynamical systentBS’s) are aimed at under- the present work. In order to construct a nontrivial model, we
standing gross features of turbulence in terms of simple modwill consider the simplex in the three-dimension@D)
els[1]. In particular, a DS based on the statistical Karhunenspace formed by the corresponding wave vectors, viz., a
Loeve eigenfunction decomposition with subsequentegular tetrahedron. Projecting the full Euler equations onto
selection of just three important modes provides a remarkthis basis, in Sec. Il we derive a DS for 12 complex ampli-
able model of wall-bounded turbulent floW2]. A model of  tudes of the flow. The system has three integrals of motion
another kind was put forth if3]. It was based on an expan- (IM’'s), two of them exactly corresponding to the energy
sion of the Euler equations over eigenflows of the curl op{E) and helicity H) of the 3D Euler equations, while the
erator with positive and negative helicities. The quadratianeaning of the third IM, to be designatédis less clear,
nonlinearity in the Euler equations naturally gives rise toalthough it may be related to the squared angular momentum
triplet interactions of different types between the modes. lof the moving fluid. We notice that the system admits a
was demonstrated that the interactions that involve modeseduction to an invariant subsystem for six complex vari-
with helicities of the same sign give rise only to an inverseables, which assumes that each edge of the underlying tetra-
cascade, while the interactions mixing modes with differenthedron is carrying either positive or negative helicity. Thus
signs of the helicity transfer the energy down to small scaleswe have three positive-helicity and three negative-helicity
modes.
In the structure of the latter system, one can easily distin-
*Electronic address: malomed@eng.tau.ac.il guish two coupled subsystems, each containing three equa-
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tions. The subsystems can be readily cast into an explicitly
Hamiltonian form(i.e., the corresponding simplectic struc-
tures can be defingdso that each conserves its own Hamil-
tonian. These two Hamiltonians are linear combinations of
E andH.

A symmetry of the DS for the six complex amplitudes
admits a further invariant reduction to gigal variables. Af-
ter both reductions, the system keeps the same three IM’s.
This finally reduced DS appears to beménimumtruncated
model of the 3D Euler equations and it is the main subject of
the present work. It is relevant to stress that, according to the
Liouville theorem, a Hamiltonian six-dimensional DS is

combletelv intearable in the bresence of three IM's. provided FIG. 1. Six wave vectors that are the basis of the truncated
P y g P P . dynamical system. The digits on each edge indicate the numbers of

lecti . identify i ith e corresponding amplitude, while the signs show which particular
plectic structure(i.e., one can identify it as a system wit helicity is chosen for the edge.

three degrees of freedgnmA reason for our system to remain
chaotic is its noncanonical simplectic structure. Il. DERIVATION OF THE SYSTEM

Results of numerical simulations are presented in Sec. lll.
We find that, in certain regions of values of the three IM’s, The helical eigenmodes of the 3D velocity fielfr) are
all the dynamical trajectories are definitely chaotic. To quandetermined as solutions to the equatieq VXxXv=uv, u
tify the chaos, we compute the mean Lyapunov exponerﬂDeing the corresponding eigenvalue. A detailed description
(LE) A characterizing the local instability of a given trajec- can be found if{3]. Each eigenmode is characterized by a
tory [5]. We find that, in these completely chaotic regions,wave vectok, so that u|=k, and by the sign of, i.e., the
A is almost independent of the choice of a particular trajechelicity. An analytical expression for the helical eigenmode
tory at fixed values of IM’s. In other words, the system ap-IS
pears to be ergodic in the chaotic regions. In some other
regions, both chaotic and regular trajectories are generated 1
by different initial conditions having equal values of the E
IM’s. Obviously, in these mixed regions the system is not
ergodic, although\ can be defined in this case too for those yherek is the unit vector parallel ti, by is an arbitrary unit
trajectories that are chaotic. We have not found any regioQecior orthogonal t& (b,=b_,), and the sign+ stands for

whereall the trajectories would be regular. _ the eigenmode’s helicity. The expansion of the 3D velocity
We delineate a boundary between the purely chaotic anggq is

mixed regions in the parametric pland/E,|/E). Generally,

the system is “most chaotic” at zero helicity and is apt to . . B B

become “less chaotic” with an increase BFE (in the limit v(r,t)=§k: [ (DVv (N +a (v (n)], 2
H/E—1, the dynamics becomes trivialTo describe the

chaotic properties of the model more accurately, we plot  \here the summation is over the whole set of the wave vec-
vs H/E at different fixed values ol‘/E, which allows us to tors Corresponding to a cubic box in the physica| space with
scan the above-mentioned parametric plane along a systepariodic boundary conditions.

of parallel cuts(we also add some perpendicular gut&n The projection of the Euler equations onto the basis of the
inference is that the dependend€H/E) is monotonically  ejgenstate$l) leads to the following set of equations for the
decreasing if the cut does not cleave the region of the mixedomplex amplitude$3]:

behavior. In the opposite case, the dependendel/E)

demonstrates several oscillations. d . 1 e 4 4 e o+

In Sec. IV we briefly consider the above-mentioned more aal?=§p+§q:=k [(P=a)(=Mpg-kapag +Mpg-k@p8q)
general DS consisting of six complex equations, a reduction
of which leads to the real system studied in detalil in Sec. II. +(p+a)(—Mpykasag +Mysiasag)], (9
We take a few typical chaotic and regular dynamical trajec-
tories of the real system and consider perturbed trajectorieshere the summation is carried out over all the wave vectors
of the complex system, obtained by adding small imaginaryp and q whose sum is equal to a given wave vedtorThe
parts to the initial values of the dynamical variables. Wecoefficients of the triplet interactions are defined as
conclude that, most typically, the regular and chaotic trajec-

; ; : ; : 8168 _ |61
tories remain, respectively, regular and chaotic after adding a M ba—k =Up
small complex perturbation, though the LE of the perturbed
chaotic trajectory may become essentialfgaller In Sec. V. where the vectort) are defined by Eq.1) and thef’s stand
we consider a modified version of our DS including lossedor the corresponding helicities.
and gain. The result is that the dynamics of the dissipatively We truncate the infinite set of equatiof®, keeping only
perturbed model is asymptotically equivalent to that of thethe amplitudes corresponding to the six wave vectors of an
conservative one at specially selected value€ofind H.  equal lengttk, which constitute the 3D simplgxetrahedron
Concluding remarks are collected in Sec. VI. as shown in Fig. 1. Since each edge of the tetrahedron carries

Vi (r)=—=(b+ikxbyek=urekr, (1)

H(UZXUB)), @
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two modes, one with positive and one with negative helicity,total momentum corresponding to the velocity fidR) is
we thus condense Eqg&3) into a DS for 12 complex vari- identically zero. The angular momentum of the same field is
ables. The chosen configuration provides an essential simpldifferent from zero; however, it is obvious that the chosen
fication, as, taking all the wave vectors with equal lengthsway of truncation breaks the spatial isotropy and therefore
we nullify the terms proportional tp—q in Egs.(3). breaks the angular momentum conservation too. Neverthe-
In this work our objective is to single out and study in less, calculating thequaredangular momentum correspond-
detail the simplest minimum nontrivial invariant subsystem ing to the truncated expansid®) produces an expression
that can be obtained as an invariant reduction of the fullthat we do not display herehat is similar to Eq.(12),
dynamical system for 12 complex variables. One can checklthough it contains some extra terms. We conjecture that the
that assuming three edges of the tetrahedron to carry onlgppearance of the additional IM is not an artifact of our
positiveH modes and three others to carry only negative- model, but is naturally linked to the “former” conserved
ones, as shown in Fig. 1, is compatible with the full squared angular momentum.
12-dimensional system. Thus we obtain an invariant reduc- Due to the obvious scale invariance of E¢®—(10), ac-
tion to a system of equations for six variables. Calculation oftual control parameters may be only the ratidéE and
the coefficientg4) demonstrates that nonzero coefficients ofl/E. Evidently, the available phase volume of the system is
the reduced system take only two different value§3/2.  largest aH=0. In the opposite limitH=E (or H=—E), the
The eventual form of the six-dimensional system is phase volume shrinks to zero. Indeed, in this limit H44)
tell us thata,=asz=ag=0, while the remaining variables
a,, a4, andas take, according to Eqs5), (8), and(9), arbi-
trary constant values.
It is easy to consider analytically the limit case
da, N (E—H)/E—D0. In this case one linearizes Ed5), (8), and
ar %8s ®  (9) with respect to the variables,, a,, andas, which are
expected to be small at smalEH)/E, assuming the re-
dag . . maining amplitudesa,, az, and ag constant. Looking for
W=alaz — 8533 , (7 solutions to the system of the three linear equations in the
form a;,a,,as~e”!, one can easily find three eigenvalues:
da, . . v,=0 and y2,3=iiwozti\/a22+a62. After adding small
ar - 13+ 3s5, (8  nonlinear terms, one may expect dynamical trajectories on
the invariant spheres?+ a5+ a2=const to be closed curves
corresponding to periodic motions with frequencies close to
——=—ayay,, (9) wg. This suggests that the systéB—(10) becomes noncha-
otic in the limit (E—H)/E— 0, which will be corroborated
dag by the numerical results displayed below in Sec. lll.
——=a}as, (10) Further inspection of Eq$5)—(10) suggests splitting the
dt full set of the variables into two subsets=(a;,a,,as) and
A,=(a,,a3,a85). The equations for each set can be repre-
sented in an explicitly Hamiltonian form. Indeed, the Hamil-
MBnian (canonical representation implies the existence of a
Hamiltonianh and of a Poisson brackésimplectic struc-
ture) [6] in the system’s phase space. For any two functions
F(a,) and G(a,) of the dynamical variables, the Poisson
bracket is

_:a4a61 (5)

where we have changed-t/+/3k anda;—ag stand for the
modes carried by the edges of the tetrahedron with the sa
numbers(Fig. 1.

Equations(5)—(10) (as well as the full 12-dimensional
system conserve three quantities. Two of them can be im
mediately identified as the energy and helicity of the flow

: {F.G}=2 S, k8 (13)
E=2 la)? H= X l|a/?>- X la% 11 T e PN ga day,
n=1

n=1,45 n=2,3,6
where the coefficient functionS,,, must be antisymmetric
and they must satisfy the Jacobi identf]. Then the ca-
The third integral is nonical equations of motion are written in terms of the Pois-
son bracket and the Hamiltonian ds,/dt={a,,h}. As a
consequence of this representation and the above-mentioned
antisymmetry ofS,,,, the Hamiltonian is conserve@nless
it contains an explicit dependence upon tjme
(12 It is easy to check that the evolution equations for the sets
A; and A, defined above can indeed be represented in the
canonical form with the Hamiltonians

1
= 5[(a1ag +ajas)—(aa +ajag) +(azast+ajay)].

Comparing the definitiong11) and (12), one can easily
prove that|H|<E and|l|<3E.

. .The only_ candidate for physical interpretation of this ad- hy= 2 a,a’ h,= 2 ana*, (14)
ditional IM is the squared angular momentum. Indeed, the n=14,5 n=2,3,6



56 DYNAMICAL CHAQCS IN A MINIMUM SYSTEM OF ... 3817

which are the combination(E+H) of the conserved en-
ergy and helicity defined in Eqg1l). The corresponding
matrices of the coefficientS,, , in the Poisson bracket43)
are, respectively,

05 R

0 ag O
o ol _
—ag 0 & (15)
0 —a, 0
osh i
for setA; and
al _
2 ” o i 2
0 - al 0 o
a 0 —a (16) FIG. 2. Typical chaotic trajectory of the real dynamical system
! 5 (6) at H/E=2/3, I/E=1/3 in the projection onto the plane
0 as 0 (a;,a,). The system was integrated fram=0 tot =1000.
for A,. Notice that the coefficient functions for each set de- ll. NUMERICAL RESULTS

pend upon the variables belonging to another set, i.e., one ) _
may regard these simplectic structures as time dependent. AS the source of the integration program, we employed

The Hamiltonians, andh,, which do not explicitly depend _the higher-order numerical code with the automaticglly ad-
upon time, remain IM’s even though the corresponding simJusted step sizg7]. For.control of accuracy, conservation of
plectic structures are time dependent. all three IM’s was continuously monitored. It was found that

To further simplify the dynamical system, we make use ofthey preserved a constant value with the relative precision
L 76 . age -
the fact that Eq¥(5)—(10) are compatible with assuming that 10~°. The reliability and accuracy of the numenc;al scheme
all the amplitudes,, are real. What will be studied in detail Were also checked by varying the fundamental time step.
in Sec. Il is exactly this real reduction. Choosihg and A typical example of a chaotic dynamical trajectory at
h, defined in Eqs(14) as independent conserved quantitiesH =0 1S sShown, in projection onto the planas(ay), in Fig.

suggests to introduce, in the real case, the polar coordinatés Since this trajectory seems to be chaotic, the next step is to
(61,¢1) and (6,,>) in the two subspaces, andA,: compute a quantitative characteristic of chaos. The dynami-
' ' cal chaos implies that the trajectories are unstable in the lin-

ear approximation, i.e., an arbitrary infinitesimal perturbation
_ ; _ d(t) of a given trajectory grows in time exponentially,
ag=hysingy,  a;=Vhycosh;cost, d(t) ~exd [A(t)dt], where (1) is called the Lyapunov expo-
— Jhs . nent. A standard characteristic of the chaok (&) averaged
a5= Vh;cosd;sing, , over a long trajectory, which will be denoteyl. If the sys-
tem is ergodic, then the result of averaging is the same for all
the trajectories pertaining to the same set of values of the

az=vh,sind,, a,=h,cos,cosp,, system’s IM’s(in the limit of infinitely long trajectories
The general scheme of numerical computatiomotan
ag= \/h,C00,sin. (17 be found in Ref[8]. We used the particular algorithm devel-

oped in[9]. Following this algorithm, one derives, first of all,

the linearized version of the DS. Obviously, the eigenvalues
In terms of the polar coordinates, Eq5)—(10) reduce to a A of the linearized system, corresponding to an infinitesimal
four-dimensional dynamical system with the remaining con-variation of a given trajectory, depend on the instantaneous
served quantity. In other words, the six-dimensional phase values of the dynamical variables along the trajectory, i.e.,
space of the real version of the syst¢®m—(10) is foliated they are functions of time. Next, one cuts a very long trajec-
into invariant four-dimensional subspaces corresponding ttory into short pieces. For each piece, one computes the ei-
different values off andH. genvalues and selects the largest one. Finallys obtained

One may be tempted to conjecture that the six-as an average of logarithms of all the instantaneous largest

dimensional DS with three conserved quantities must be ineigenvalues. The trajectory is really chaotic if thus computed
tegrable according to the Liouville theoref]. Neverthe- A is positive.
less, direct simulations described below will clearly Implementing this scheme of computation/of we have
demonstrate that our DS easily generates chaotic trajectorieghecked that the mean value attains a nearly constant value
hence it cannot be integrable. The most plausible explanatioand ceases to demonstrate any conspicuous variations after
for the lack of integrability is that the simplectic structure averaging over the time interval 1000. Nevertheless, to
based on the two matricgs15) and (16) is very different  confirm that the obtained values Afwere indeed stabilized,
from that for the standard Hamiltonian system with threesome runs were extended up to the time 5000 and even
degrees of freedom. 10 000.
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o FIG. 4. Chart of the parametric plan&l(E,|/E). The squares

and “Union Jacks” are symbols for the spots where, respectively,
the fully chaotic and mixedchaotic or regulgrbehavior has been
FIG. 3. Typical nonchaotic dynamical trajectory laftE=2/3, revealed by the simulations.
I/E=1/3 in the projection onto the plana{,a,). The system was
integrated fromt =0 tot =1000. close to zero and then abruptly vanishes, demonstrating a
very steep decrease. Because of this feature, we had to use

Scanning the phase space of our DS, we have found th@e variable IfiE/(E—H)] as the abscissa in Fig. 5.
at some values of the three IM’s all the simulated trajectories

are clearly chaotic, and in this case the corresponding aver-
aged exponentd are indeed almost exactly equake be-
low). At some other values of the IM’s, we were able to find It is, of course, very important to check if the general
both chaotic and regular trajectories, depending on the paproperties of ouminimumDS obtained by the deepest pos-
ticular choice of the initial point. In Fig. 3 we display a sible truncation of the Euler equations remain qualitatively
typical example of the regular trajectory found in this casethe same in the framework of a truncation keeping more
and in Fig. 4 we show &ather coarsechart of the paramet- modes and thus, in a certain sense, standing closer to the
ric plane H/E,I/E) in order to delineate a border between underlying Euler equations. The first step in this direction is
the ergodic(completely chaoticregion and the nonergodic to consider the systertb)—(10) for six complexvariables
one, where the mixed behavior has been found. The fact that,. Recall that the complex system has the same three IM’s
a conservative DS may have ergodic and nonergodic regiorts, H, and | as its real counterpart, while its actual phase
in its phase space is well knows]. space is 12 dimensional. Systematic simulations of the com-

In order to present the chaotic properties of the model in glex system is beyond the scope of this work; here, we only
more accurate form, in Fig. 5 we have plottddvs H/E  display, in Fig. Tb), a typical example that allows one to
(using a logarithmic horizontal scale; see belalong six ~ compare the chaotic and regular dynamical trajectories in the
vertical cuts shown in Fig. 4 and in Fig. & is plotted vs real system and those in the complex one, obtained by add-
I/E along three horizontal cuts. As one sees from these plotsng a small imaginary part to the initial value of one of the
a noticeable feature of the plots is the¢H/E) is monotoni-  dynamical variables,,. In the case displayed in Fig. 7, the
cally decreasing, provided that the corresponding cuts do ndiaginary part was added to the initial value af. It was
cleave the nonergodic region of the mixed behavior. Thisaken to be~ 3 of the corresponding real part.
seems quite natural because, according to (Ed), an in- We observed that the small complex perturbation con-
crease of the helicity at a fixed value of the energy makes thepicuously alters the shape of the chaotic trajectory, which is
available volume of the phase space smaller, hence the mia accord with the fact that all the chaotic trajectories are
tion may be expected to be less chaotic. The dependen@ubject to a local instability. However, we have also ob-
A(H/E) demonstrates a nonmonotonic behavisith some  served that, most typically, the general character of the tra-
oscillations if the corresponding cut is cleaving the noner- jectory is not changed by the small initial complex perturba-
godic region. tion: regular trajectories remain regular and chaotic ones

Another noticeable feature is that, outside the regions ofemain chaotic.
the mixed behavior, the points generated by different trajec- Nevertheless, starting from a regular trajectory close to
tories pertaining to the same set of values of the three IM'she border of the chaotic region, we could sometimes ob-
are fairly close to each other. This feature strongly suggestserve that the complex perturbation made the former regular
that the region in which all the trajectories are chaotic istrajectory chaotic. An example in shown in Fig.[for the
indeed ergodic. chaotic trajectory displayed in Fig.(), A=0.157. We

All the plots displayed in Fig. 5 show that, in accord with have never observed the opposite effect, i.e., transformation
the simple analysis performed in Sec. Il, the behavior of theof a chaotic trajectory into a regular one under the action of
system becomes nonchaotic in the limE-{H)/E—0. the complex perturbation.
However, an unexpected feature is that, quite typically, Direct numerical evaluation of the LE demonstrates that a
keeps a nearly constant positive value upEo-(H)/E very  relatively small initial complex perturbation, although it does

IV. THE COMPLEX DYNAMICAL SYSTEM
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FIG. 5. Dependences of the mean Lyapunov exponeaponH/E corresponding to six vertical cuts of the parameter plane of Fig. 4:
(a) atI/E=0.066,(b) at I/E=0.20,(c) atI/E=0.33,(d) atI/E=0.38, and(e) at I/E=0.43. For the horizontal axis, we usd B{E—H)]
instead ofE/H. The different symbols in these plots represent the values obtained for trajectories starting at initial points picked up,
at given fixed values of all the three integrals of motion, by means of different auxiliary algorithms. In the case when the trajectory is
nonchaotic, we seA =0.

not, generically, lead to a drastic qualitative change of théHowever, it is necessary to accumulate more numerical data
trajectory, results in a conspicuous change of its LE; forin order to arrive at more definite conclusions concerning
instance, in the case displayed in Fig. 7, the LE correspondsimilarities and differences between the real and complex
ing to the complex trajectory is 0.077, while the value of theversions of our dynamical system.

LE for its real counterpart shown in Fig. 2 is 0.321. As a
general trend, we have noticed that the LE for the complex
trajectory is at least a factor of @maller than for its real
counterpart. This trend seems somewhat unexpected becauseAn issue of obvious interest is to add dissipative terms
the complex trajectory belongs to an essentially larger phaseand a compensating gain to the conservative model consid-
space than the real one and also because, as mentionetkd above so as to lend it a chance to mimic turbulence of a
above, the complex perturbation could sometimes transformaiscous fluid. The simplest possibility is to replace EGs$-—

a regular trajectory into a chaotic one, but not vice versa(10) by the equations

V. THE DISSIPATIVELY PERTURBED MODEL
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FIG. 6. Dependences of the mean Lyapunov exporemipon

I/E corresponding to three horizontal cuts of the parameter plane of
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da °
—1=aia6+ yal—F( Z a, 2) aj, (18)
dt n=1
da,
_2:—ala§+»yaz—]"( 2 a, 2) ay, (19
dt n=1
da
_3:a1a;_asa’6‘+'ya3—]"( E a, Z)ag, (20
dt n=1
da, :
W: —a;ae+ azag + 7a4_r( E an 2)a41 (21)
n=1
d
i5=—azai+ya5—F( > |an 2) as, (22
dt n=1
dag °
—=a§a5+ 736_F( 2 an 2) ag, (23)
dt n=1
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FIG. 7. Example of transformation of a regular real trajectory
(a) into a chaotic one anth) under the action of a small complex
perturbation of the initial point.

by the conservative equatio$)—(10) in the particular case
whenE, H, andl take the value&,, Hy, andl,. Thus this
simplest dissipative generalization asymptotically amounts to
a particular case of the conservative system.

VI. CONCLUSION

In this work we have derived a Hamiltonian dynamical

wherel'>0 is an effective friction,y>0 is a compensating system, projecting the 3D Euler equations onto a basis com-
gain coefficient, and it is assumed that the friction and gairposed of six wave vectors closed into a regular tetrahedron.

are added isotropically in the space of the varialalgs

We have derived a system of six equations for complex am-

The IM’s are no longer conserved in the presence of thesplitudes of the flow, with three integrals of motion. The sys-

perturbations. Instead, one can easily derive from Ef®-—
(23) the following evolution equation for the energy:

dE
—=2yE—2T'E?,

T (24)

from which it follows that, in the limitt—oo, the energy
takes the uniquely determined asymptotic vakw=y/T.

With regard to Eq.(24), the evolution of the former con-
served quantitieH and | is governed by the equations
dH/dE=H/E anddI/dE=I/E. From these equations it fol-

lows that, in the limitt—, H and| take the limit values
Ho=(Hn/Ein)Eo andlo=(lin/Ein) Eg, WhereH,, I;,, and
E;, are initial values of the former IM's. Finally, it follows

tem admits reduction to six real equations for three positive-
helicity and three negative-helicity modes, which is the
minimum truncation of the 3D Euler equations. We have
simulated the latter system numerically and have demon-
strated that it is chaotic despite having three itegrals of mo-
tion in its six-dimensional phase space. The simulations re-
veal that the dynamics is fully chaotic in a part of the
system’s phase space, while in another part it mixes chaotic
and regular trajectories. We computed the mean Lyapunov
exponentA characterizing the local instability of the trajec-
tories. We have found that is nearly independent of the
choice of the trajectory in the chaotic region, i.e., this region
appears to be ergodic.

An issue of profound importance is to understand if the

from Egs. (18)—(23) that, asymptotically, the motion gov- behavior of the dynamical system can really mimic the 3D
erned by these equations will be the same as that governdgller equations, from which the dynamical system was ob-
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tained by truncation. To check this, the next relevant step i was demonstrated that this generalization actually amounts
to consider a system generated by projection of the Euleto a special case of the conservative model.

equations onto a larger basis. In practical terms, this implies,
first of all, to simulate the full system of the complex equa-
tions (5)—(10). In this work we did not display systematic
results for the complex system. Nevertheless, on the basis of We are indebted to L. A. Bunimovich, P. Grassberger,
more limited simulations, we have concluded that a smalbnd A. S. Pikovsky for useful discussions. R.M. appreciates
complex perturbation does not generically lead to a qualitathe hospitality of the Faculty of Engineering at the Tel Aviv
tive change of the system’s dynamics, although a change ibniversity. B.A.M. and R.M. gratefully acknowledge sup-
the Lyapunov exponent may be quite conspicuous. A simpl@ort from Ormat Industries Ltd:\Yavneh, Israel R. M. ex-
dissipative modification of the model was considered too andends her gratitude to B. Bacchi for his encouraging support.
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