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Dynamical chaos in a minimum system of truncated Euler equations
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We derive a finite-dimensional Hamiltonian dynamical system, projecting the Euler equations onto a basis
composed of six wave vectors closed into a tetrahedron with equal edges. We obtain a system of twelve
equations for complex amplitudes of the flow, with three integrals of motion~IM’s !, namely, the energy (E),
helicity (H), and an additional one related to the squared angular momentum. The system admits reduction to
six complex equations and finally to six real ones for three positive-helicity and three negative-helicity modes,
which is theminimumdynamical system to approximate the three-dimensional Euler equations. We simulate
the latter system numerically and demonstrate that it is partly chaotic despite having the same three IM’s in its
six-dimensional phase space. The simulations reveal that the dynamics is fully chaotic in some region of the
phase space, while in another region it is mixed: at the same set of values of IM’s, some trajectories are chaotic
and some are regular. A chart showing the fully chaotic and mixed regions is obtained, in the first approxi-
mation, in the space of the IM’s values. To quantify the chaos, we compute the mean Lyapunov exponent~LE!
L characterizing the local instability of the trajectories. We find thatL is nearly independent of the choice of
the trajectory at fixed values of IM’s in the fully chaotic region, i.e., this region appears to be ergodic.
Generally, the system is ‘‘most chaotic’’ at zero helicity and it is apt to become ‘‘less chaotic’’ with an
increase ofH/E. We demonstrate, in accord with this, thatL is a monotonically decreasing function ofH/E
in the chaotic region, but inside the region of the mixed behavior the dependence is not monotonic. We also
report some results obtained for a more general system of six complex equations. A preliminary inference is
that there is no drastic qualitative difference from the system of six real equations, though a change~decrease!
of LE can be conspicuous. A simple dissipative generalization of the model is considered too.
@S1063-651X~97!04409-7#

PACS number~s!: 05.45.1b, 47.27.Eq
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I. INTRODUCTION

Attempts to approximate turbulent flows by finite
dimensional dynamical systems~DS’s! are aimed at under
standing gross features of turbulence in terms of simple m
els @1#. In particular, a DS based on the statistical Karhun
Loeve eigenfunction decomposition with subsequ
selection of just three important modes provides a rema
able model of wall-bounded turbulent flows@2#. A model of
another kind was put forth in@3#. It was based on an expan
sion of the Euler equations over eigenflows of the curl o
erator with positive and negative helicities. The quadra
nonlinearity in the Euler equations naturally gives rise
triplet interactions of different types between the modes
was demonstrated that the interactions that involve mo
with helicities of the same sign give rise only to an inver
cascade, while the interactions mixing modes with differ
signs of the helicity transfer the energy down to small sca
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However, the decomposition based on the curl eigenflo
was not used in@3# for the derivation of an actual DS to
model the turbulence. Steps in this direction will be made
the present work. In order to construct a nontrivial model,
will consider the simplex in the three-dimensional~3D!
space formed by the corresponding wave vectors, viz
regular tetrahedron. Projecting the full Euler equations o
this basis, in Sec. II we derive a DS for 12 complex amp
tudes of the flow. The system has three integrals of mot
~IM’s !, two of them exactly corresponding to the ener
(E) and helicity (H) of the 3D Euler equations, while th
meaning of the third IM, to be designatedI , is less clear,
although it may be related to the squared angular momen
of the moving fluid. We notice that the system admits
reduction to an invariant subsystem for six complex va
ables, which assumes that each edge of the underlying t
hedron is carrying either positive or negative helicity. Th
we have three positive-helicity and three negative-helic
modes.

In the structure of the latter system, one can easily dis
guish two coupled subsystems, each containing three e
3814 © 1997 The American Physical Society



it
c-
il-
o

s

M

t o
th
is
e
si
h
n

II
’s
an
e
c-
s

ec
p

th
at
e
o

se
io

an

to

t

st

xe

r
tio
II
ec
ri
ar

e
ec
g
e

e
e

th

tion
a

de

ity

ec-
ith

the
e

tors

an

rries

ted
rs of
lar

56 3815DYNAMICAL CHAOS IN A MINIMUM SYSTEM OF . . .
tions. The subsystems can be readily cast into an explic
Hamiltonian form~i.e., the corresponding simplectic stru
tures can be defined!, so that each conserves its own Ham
tonian. These two Hamiltonians are linear combinations
E andH.

A symmetry of the DS for the six complex amplitude
admits a further invariant reduction to sixreal variables. Af-
ter both reductions, the system keeps the same three I
This finally reduced DS appears to be aminimumtruncated
model of the 3D Euler equations and it is the main subjec
the present work. It is relevant to stress that, according to
Liouville theorem, a Hamiltonian six-dimensional DS
completely integrable in the presence of three IM’s, provid
that the system’s phase space is endowed with a usual
plectic structure~i.e., one can identify it as a system wit
three degrees of freedom!. A reason for our system to remai
chaotic is its noncanonical simplectic structure.

Results of numerical simulations are presented in Sec.
We find that, in certain regions of values of the three IM
all the dynamical trajectories are definitely chaotic. To qu
tify the chaos, we compute the mean Lyapunov expon
~LE! L characterizing the local instability of a given traje
tory @5#. We find that, in these completely chaotic region
L is almost independent of the choice of a particular traj
tory at fixed values of IM’s. In other words, the system a
pears to be ergodic in the chaotic regions. In some o
regions, both chaotic and regular trajectories are gener
by different initial conditions having equal values of th
IM’s. Obviously, in these mixed regions the system is n
ergodic, althoughL can be defined in this case too for tho
trajectories that are chaotic. We have not found any reg
whereall the trajectories would be regular.

We delineate a boundary between the purely chaotic
mixed regions in the parametric plane (H/E,I /E). Generally,
the system is ‘‘most chaotic’’ at zero helicity and is apt
become ‘‘less chaotic’’ with an increase ofH/E ~in the limit
H/E→1, the dynamics becomes trivial!. To describe the
chaotic properties of the model more accurately, we ploL
vs H/E at different fixed values ofI /E, which allows us to
scan the above-mentioned parametric plane along a sy
of parallel cuts~we also add some perpendicular cuts!. An
inference is that the dependenceL(H/E) is monotonically
decreasing if the cut does not cleave the region of the mi
behavior. In the opposite case, the dependenceL(H/E)
demonstrates several oscillations.

In Sec. IV we briefly consider the above-mentioned mo
general DS consisting of six complex equations, a reduc
of which leads to the real system studied in detail in Sec.
We take a few typical chaotic and regular dynamical traj
tories of the real system and consider perturbed trajecto
of the complex system, obtained by adding small imagin
parts to the initial values of the dynamical variables. W
conclude that, most typically, the regular and chaotic traj
tories remain, respectively, regular and chaotic after addin
small complex perturbation, though the LE of the perturb
chaotic trajectory may become essentiallysmaller. In Sec. V
we consider a modified version of our DS including loss
and gain. The result is that the dynamics of the dissipativ
perturbed model is asymptotically equivalent to that of
conservative one at specially selected values ofE and H.
Concluding remarks are collected in Sec. VI.
ly
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II. DERIVATION OF THE SYSTEM

The helical eigenmodes of the 3D velocity fieldv(r ) are
determined as solutions to the equation@4# ¹3v5mv, m
being the corresponding eigenvalue. A detailed descrip
can be found in@3#. Each eigenmode is characterized by
wave vectork, so thatumu5k, and by the sign ofm, i.e., the
helicity. An analytical expression for the helical eigenmo
is

vk
6~r !5

1

A2
~bk6 i k̂3bk!eik•r[Uk

6eik•r, ~1!

wherek̂ is the unit vector parallel tok, bk is an arbitrary unit
vector orthogonal tok (bk[b2k), and the sign6 stands for
the eigenmode’s helicity. The expansion of the 3D veloc
field is

v~r ,t !5(
k

@ak
1~ t !vk

1~r !1ak
2~ t !vk

2~r !#, ~2!

where the summation is over the whole set of the wave v
tors corresponding to a cubic box in the physical space w
periodic boundary conditions.

The projection of the Euler equations onto the basis of
eigenstates~1! leads to the following set of equations for th
complex amplitudes@3#:

d

dt
ak

65
1

2 (
p1q5k

@~p2q!~2Mpq2k
666ap

6aq
61Mpq2k

776ap
7aq

7!

1~p1q!~2Mpq2k
676ap

6aq
71Mpq2k

766ap
7aq

6!#, ~3!

where the summation is carried out over all the wave vec
p andq whose sum is equal to a given wave vectork. The
coefficients of the triplet interactions are defined as

Mpq2k
E1E2E3[Up

E1
•~Uq

E23U
2k
E3 !, ~4!

where the vectorsU are defined by Eq.~1! and theE’s stand
for the corresponding helicities.

We truncate the infinite set of equations~3!, keeping only
the amplitudes corresponding to the six wave vectors of
equal lengthk, which constitute the 3D simplex~tetrahedron!
as shown in Fig. 1. Since each edge of the tetrahedron ca

FIG. 1. Six wave vectors that are the basis of the trunca
dynamical system. The digits on each edge indicate the numbe
the corresponding amplitude, while the signs show which particu
helicity is chosen for the edge.
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3816 56LEVICH, MALOMED, MONTI, SHTILMAN, AND TSIBELMAN
two modes, one with positive and one with negative helic
we thus condense Eqs.~3! into a DS for 12 complex vari-
ables. The chosen configuration provides an essential sim
fication, as, taking all the wave vectors with equal lengt
we nullify the terms proportional top2q in Eqs.~3!.

In this work our objective is to single out and study
detail the simplest~ minimum! nontrivial invariant subsystem
that can be obtained as an invariant reduction of the
dynamical system for 12 complex variables. One can ch
that assuming three edges of the tetrahedron to carry
positive-H modes and three others to carry only negativeH
ones, as shown in Fig. 1, is compatible with the f
12-dimensional system. Thus we obtain an invariant red
tion to a system of equations for six variables. Calculation
the coefficients~4! demonstrates that nonzero coefficients
the reduced system take only two different values6A3/2.
The eventual form of the six-dimensional system is

da1

dt
5a4* a6 , ~5!

da2

dt
52a1a3* , ~6!

da3

dt
5a1a2* 2a5a6* , ~7!

da4

dt
52a1* a61a2a5* , ~8!

da5

dt
52a2a4* , ~9!

da6

dt
5a3* a5 , ~10!

where we have changedt→t/A3k and a1–a6 stand for the
modes carried by the edges of the tetrahedron with the s
numbers~Fig. 1!.

Equations~5!–~10! ~as well as the full 12-dimensiona
system! conserve three quantities. Two of them can be i
mediately identified as the energy and helicity of the flow

E5 (
n51

6

uanu2, H5 (
n51,4,5

uanu22 (
n52,3,6

uanu2. ~11!

The third integral is

I 5
1

2
@~a1a5* 1a1* a5!2~a2a6* 1a2* a6!1~a3a41a3* a4* !#.

~12!

Comparing the definitions~11! and ~12!, one can easily

prove thatuHu<E and uI u< 1
2 E.

The only candidate for physical interpretation of this a
ditional IM is the squared angular momentum. Indeed,
,
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total momentum corresponding to the velocity field~2! is
identically zero. The angular momentum of the same field
different from zero; however, it is obvious that the chos
way of truncation breaks the spatial isotropy and theref
breaks the angular momentum conservation too. Never
less, calculating thesquaredangular momentum correspond
ing to the truncated expansion~2! produces an expressio
~that we do not display here! that is similar to Eq.~12!,
although it contains some extra terms. We conjecture that
appearance of the additional IM is not an artifact of o
model, but is naturally linked to the ‘‘former’’ conserve
squared angular momentum.

Due to the obvious scale invariance of Eqs.~5!–~10!, ac-
tual control parameters may be only the ratiosH/E and
I /E. Evidently, the available phase volume of the system
largest atH50. In the opposite limitH5E ~or H52E), the
phase volume shrinks to zero. Indeed, in this limit Eqs.~11!
tell us thata25a35a650, while the remaining variables
a1, a4, anda5 take, according to Eqs.~5!, ~8!, and~9!, arbi-
trary constant values.

It is easy to consider analytically the limit cas
(E2H)/E→0. In this case one linearizes Eqs.~5!, ~8!, and
~9! with respect to the variablesa1, a4, and a5, which are
expected to be small at small (E2H)/E, assuming the re-
maining amplitudesa2, a3, and a6 constant. Looking for
solutions to the system of the three linear equations in
form a1 ,a4 ,a5;egt, one can easily find three eigenvalue
g150 and g2,356 iv0[6 iAa2

21a6
2. After adding small

nonlinear terms, one may expect dynamical trajectories
the invariant spheresa1

21a4
21a5

25const to be closed curve
corresponding to periodic motions with frequencies close
v0. This suggests that the system~5!–~10! becomes noncha
otic in the limit (E2H)/E→0, which will be corroborated
by the numerical results displayed below in Sec. III.

Further inspection of Eqs.~5!–~10! suggests splitting the
full set of the variables into two subsetsA1[(a1 ,a4 ,a5) and
A2[(a2 ,a3 ,a6). The equations for each set can be rep
sented in an explicitly Hamiltonian form. Indeed, the Ham
tonian ~canonical! representation implies the existence of
Hamiltonian h and of a Poisson bracket~simplectic struc-
ture! @6# in the system’s phase space. For any two functio
F(an) and G(an) of the dynamical variables, the Poisso
bracket is

$F,G%5(
m,n

Smn

]F

]am

]G

]an
, ~13!

where the coefficient functionsSmn must be antisymmetric
and they must satisfy the Jacobi identity@6#. Then the ca-
nonical equations of motion are written in terms of the Po
son bracket and the Hamiltonian asdan /dt5$an ,h%. As a
consequence of this representation and the above-menti
antisymmetry ofSmn , the Hamiltonian is conserved~unless
it contains an explicit dependence upon time!.

It is easy to check that the evolution equations for the s
A1 and A2 defined above can indeed be represented in
canonical form with the Hamiltonians

h15 (
n51,4,5

anan* , h25 (
n52,3,6

anan* , ~14!
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56 3817DYNAMICAL CHAOS IN A MINIMUM SYSTEM OF . . .
which are the combinations12 (E6H) of the conserved en
ergy and helicity defined in Eqs.~11!. The corresponding
matrices of the coefficientsSm,n in the Poisson brackets~13!
are, respectively,

S 0 a6 0

2a6 0 a2

0 2a2 0
D ~15!

for setA1 and

S 0 2a1 0

a1 0 2a5

0 a5 0
D ~16!

for A2. Notice that the coefficient functions for each set d
pend upon the variables belonging to another set, i.e.,
may regard these simplectic structures as time depend
The Hamiltoniansh1 andh2, which do not explicitly depend
upon time, remain IM’s even though the corresponding s
plectic structures are time dependent.

To further simplify the dynamical system, we make use
the fact that Eqs.~5!–~10! are compatible with assuming tha
all the amplitudesan are real. What will be studied in deta
in Sec. III is exactly this real reduction. Choosingh1 and
h2 defined in Eqs.~14! as independent conserved quantit
suggests to introduce, in the real case, the polar coordin
(u1 ,f1) and (u2 ,f2) in the two subspacesA1 andA2:

a45Ah1sinu1 , a15Ah1cosu1cosf1 ,

a55Ah1cosu1sinf1 ,

a35Ah2sinu2 , a25Ah2cosu2cosf2 ,

a65Ah2cosu2sinf2 . ~17!

In terms of the polar coordinates, Eqs.~5!–~10! reduce to a
four-dimensional dynamical system with the remaining co
served quantityI . In other words, the six-dimensional pha
space of the real version of the system~5!–~10! is foliated
into invariant four-dimensional subspaces corresponding
different values ofE andH.

One may be tempted to conjecture that the s
dimensional DS with three conserved quantities must be
tegrable according to the Liouville theorem@6#. Neverthe-
less, direct simulations described below will clear
demonstrate that our DS easily generates chaotic trajecto
hence it cannot be integrable. The most plausible explana
for the lack of integrability is that the simplectic structu
based on the two matrices~ 15! and ~16! is very different
from that for the standard Hamiltonian system with thr
degrees of freedom.
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III. NUMERICAL RESULTS

As the source of the integration program, we employ
the higher-order numerical code with the automatically a
justed step size@7#. For control of accuracy, conservation o
all three IM’s was continuously monitored. It was found th
they preserved a constant value with the relative precis
1026. The reliability and accuracy of the numerical schem
were also checked by varying the fundamental time step

A typical example of a chaotic dynamical trajectory
H50 is shown, in projection onto the plane (a1 ,a2), in Fig.
2. Since this trajectory seems to be chaotic, the next step
compute a quantitative characteristic of chaos. The dyna
cal chaos implies that the trajectories are unstable in the
ear approximation, i.e., an arbitrary infinitesimal perturbat
d(t) of a given trajectory grows in time exponentially
d(t);exp@*l(t)dt#, wherel(t) is called the Lyapunov expo
nent. A standard characteristic of the chaos isl(t) averaged
over a long trajectory, which will be denotedL. If the sys-
tem is ergodic, then the result of averaging is the same fo
the trajectories pertaining to the same set of values of
system’s IM’s~in the limit of infinitely long trajectories!.

The general scheme of numerical computation ofL can
be found in Ref.@8#. We used the particular algorithm deve
oped in@9#. Following this algorithm, one derives, first of al
the linearized version of the DS. Obviously, the eigenvalu
l of the linearized system, corresponding to an infinitesim
variation of a given trajectory, depend on the instantane
values of the dynamical variables along the trajectory, i
they are functions of time. Next, one cuts a very long traj
tory into short pieces. For each piece, one computes the
genvalues and selects the largest one. Finally,L is obtained
as an average of logarithms of all the instantaneous lar
eigenvalues. The trajectory is really chaotic if thus compu
L is positive.

Implementing this scheme of computation ofL, we have
checked that the mean value attains a nearly constant v
and ceases to demonstrate any conspicuous variations
averaging over the time interval;1000. Nevertheless, to
confirm that the obtained values ofL were indeed stabilized
some runs were extended up to the time 5000 and e
10 000.

FIG. 2. Typical chaotic trajectory of the real dynamical syste
~6! at H/E52/3, I /E51/3 in the projection onto the plan
(a1 ,a2). The system was integrated fromt 50 to t 51000.
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3818 56LEVICH, MALOMED, MONTI, SHTILMAN, AND TSIBELMAN
Scanning the phase space of our DS, we have found
at some values of the three IM’s all the simulated trajecto
are clearly chaotic, and in this case the corresponding a
aged exponentsL are indeed almost exactly equal~see be-
low!. At some other values of the IM’s, we were able to fi
both chaotic and regular trajectories, depending on the
ticular choice of the initial point. In Fig. 3 we display
typical example of the regular trajectory found in this ca
and in Fig. 4 we show a~rather coarse! chart of the paramet
ric plane (H/E,I /E) in order to delineate a border betwee
the ergodic~completely chaotic! region and the nonergodi
one, where the mixed behavior has been found. The fact
a conservative DS may have ergodic and nonergodic reg
in its phase space is well known@5#.

In order to present the chaotic properties of the model
more accurate form, in Fig. 5 we have plottedL vs H/E
~using a logarithmic horizontal scale; see below! along six
vertical cuts shown in Fig. 4 and in Fig. 6L is plotted vs
I /E along three horizontal cuts. As one sees from these p
a noticeable feature of the plots is thatL(H/E) is monotoni-
cally decreasing, provided that the corresponding cuts do
cleave the nonergodic region of the mixed behavior. T
seems quite natural because, according to Eq.~11!, an in-
crease of the helicity at a fixed value of the energy makes
available volume of the phase space smaller, hence the
tion may be expected to be less chaotic. The depende
L(H/E) demonstrates a nonmonotonic behavior~with some
oscillations! if the corresponding cut is cleaving the none
godic region.

Another noticeable feature is that, outside the regions
the mixed behavior, the points generated by different tra
tories pertaining to the same set of values of the three I
are fairly close to each other. This feature strongly sugg
that the region in which all the trajectories are chaotic
indeed ergodic.

All the plots displayed in Fig. 5 show that, in accord wi
the simple analysis performed in Sec. II, the behavior of
system becomes nonchaotic in the limit (E2H)/E→0.
However, an unexpected feature is that, quite typically,L
keeps a nearly constant positive value up to (E2H)/E very

FIG. 3. Typical nonchaotic dynamical trajectory atH/E52/3,
I /E51/3 in the projection onto the plane (a1 ,a2). The system was
integrated fromt 50 to t 51000.
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close to zero and then abruptly vanishes, demonstratin
very steep decrease. Because of this feature, we had to
the variable ln@E/(E2H)# as the abscissa in Fig. 5.

IV. THE COMPLEX DYNAMICAL SYSTEM

It is, of course, very important to check if the gener
properties of ourminimumDS obtained by the deepest po
sible truncation of the Euler equations remain qualitativ
the same in the framework of a truncation keeping m
modes and thus, in a certain sense, standing closer to
underlying Euler equations. The first step in this direction
to consider the system~5!–~10! for six complexvariables
an . Recall that the complex system has the same three I
E, H, and I as its real counterpart, while its actual pha
space is 12 dimensional. Systematic simulations of the c
plex system is beyond the scope of this work; here, we o
display, in Fig. 7~b!, a typical example that allows one t
compare the chaotic and regular dynamical trajectories in
real system and those in the complex one, obtained by a
ing a small imaginary part to the initial value of one of th
dynamical variablesan . In the case displayed in Fig. 7, th
imaginary part was added to the initial value ofa1. It was
taken to be; 1

10 of the corresponding real part.
We observed that the small complex perturbation c

spicuously alters the shape of the chaotic trajectory, whic
in accord with the fact that all the chaotic trajectories a
subject to a local instability. However, we have also o
served that, most typically, the general character of the
jectory is not changed by the small initial complex perturb
tion: regular trajectories remain regular and chaotic o
remain chaotic.

Nevertheless, starting from a regular trajectory close
the border of the chaotic region, we could sometimes
serve that the complex perturbation made the former reg
trajectory chaotic. An example in shown in Fig. 7@for the
chaotic trajectory displayed in Fig. 7~b!, L50.157#. We
have never observed the opposite effect, i.e., transforma
of a chaotic trajectory into a regular one under the action
the complex perturbation.

Direct numerical evaluation of the LE demonstrates tha
relatively small initial complex perturbation, although it do

FIG. 4. Chart of the parametric plane (H/E,I /E). The squares
and ‘‘Union Jacks’’ are symbols for the spots where, respective
the fully chaotic and mixed~chaotic or regular! behavior has been
revealed by the simulations.
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FIG. 5. Dependences of the mean Lyapunov exponentL uponH/E corresponding to six vertical cuts of the parameter plane of Fig
~a! at I /E50.066,~b! at I /E50.20, ~c! at I /E50.33, ~d! at I /E50.38, and~e! at I /E50.43. For the horizontal axis, we use ln@E/(E2H)#
instead ofE/H. The different symbols in these plots represent the values ofL obtained for trajectories starting at initial points picked u
at given fixed values of all the three integrals of motion, by means of different auxiliary algorithms. In the case when the traje
nonchaotic, we setL[0.
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not, generically, lead to a drastic qualitative change of
trajectory, results in a conspicuous change of its LE;
instance, in the case displayed in Fig. 7, the LE correspo
ing to the complex trajectory is 0.077, while the value of t
LE for its real counterpart shown in Fig. 2 is 0.321. As
general trend, we have noticed that the LE for the comp
trajectory is at least a factor of 2smaller than for its real
counterpart. This trend seems somewhat unexpected bec
the complex trajectory belongs to an essentially larger ph
space than the real one and also because, as ment
above, the complex perturbation could sometimes transf
a regular trajectory into a chaotic one, but not vice ver
e
r
d-

x

use
se
ned
m
.

However, it is necessary to accumulate more numerical d
in order to arrive at more definite conclusions concern
similarities and differences between the real and comp
versions of our dynamical system.

V. THE DISSIPATIVELY PERTURBED MODEL

An issue of obvious interest is to add dissipative ter
and a compensating gain to the conservative model con
ered above so as to lend it a chance to mimic turbulence
viscous fluid. The simplest possibility is to replace Eqs.~5!–
~10! by the equations
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da1

dt
5a4* a61ga12GS (

n51

6 UanU2D a1 , ~18!

da2

dt
52a1a3* 1ga22GS (

n51

6 UanU2D a2 , ~19!

da3

dt
5a1a2* 2a5a6* 1ga32GS (

n51

6 UanU2D a3 , ~20!

da4

dt
52a1* a61a2a5* 1ga42GS (

n51

6 UanU2D a4 , ~21!

da5

dt
52a2a4* 1ga52GS (

n51

6 UanU2D a5 , ~22!

da6

dt
5a3* a51ga62GS (

n51

6 UanU2D a6 , ~23!

whereG.0 is an effective friction,g.0 is a compensating
gain coefficient, and it is assumed that the friction and g
are added isotropically in the space of the variablesan .

The IM’s are no longer conserved in the presence of th
perturbations. Instead, one can easily derive from Eqs.~18!–
~23! the following evolution equation for the energy:

dE

dt
52gE22GE2, ~24!

from which it follows that, in the limitt→`, the energy
takes the uniquely determined asymptotic valueE05g/G.
With regard to Eq.~24!, the evolution of the former con
served quantitiesH and I is governed by the equation
dH/dE5H/E anddI/dE5I /E. From these equations it fol
lows that, in the limitt→`, H and I take the limit values
H05(H in /Ein)E0 and I 05(I in /Ein)E0, whereH in , I in , and
Ein are initial values of the former IM’s. Finally, it follows
from Eqs. ~18!–~23! that, asymptotically, the motion gov
erned by these equations will be the same as that gove

FIG. 6. Dependences of the mean Lyapunov exponentL upon
I /E corresponding to three horizontal cuts of the parameter plan
Fig. 4. Different symbols have the same meaning as in Fig. 5.
n

e

ed

by the conservative equations~ 5!–~10! in the particular case
whenE, H, and I take the valuesE0, H0, and I 0. Thus this
simplest dissipative generalization asymptotically amount
a particular case of the conservative system.

VI. CONCLUSION

In this work we have derived a Hamiltonian dynamic
system, projecting the 3D Euler equations onto a basis c
posed of six wave vectors closed into a regular tetrahed
We have derived a system of six equations for complex a
plitudes of the flow, with three integrals of motion. The sy
tem admits reduction to six real equations for three positi
helicity and three negative-helicity modes, which is t
minimum truncation of the 3D Euler equations. We ha
simulated the latter system numerically and have dem
strated that it is chaotic despite having three itegrals of m
tion in its six-dimensional phase space. The simulations
veal that the dynamics is fully chaotic in a part of th
system’s phase space, while in another part it mixes cha
and regular trajectories. We computed the mean Lyapu
exponentL characterizing the local instability of the trajec
tories. We have found thatL is nearly independent of the
choice of the trajectory in the chaotic region, i.e., this reg
appears to be ergodic.

An issue of profound importance is to understand if t
behavior of the dynamical system can really mimic the
Euler equations, from which the dynamical system was

FIG. 7. Example of transformation of a regular real trajecto
~a! into a chaotic one and~b! under the action of a small comple
perturbation of the initial point.
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tained by truncation. To check this, the next relevant ste
to consider a system generated by projection of the E
equations onto a larger basis. In practical terms, this impl
first of all, to simulate the full system of the complex equ
tions ~5!–~10!. In this work we did not display systemati
results for the complex system. Nevertheless, on the bas
more limited simulations, we have concluded that a sm
complex perturbation does not generically lead to a qua
tive change of the system’s dynamics, although a chang
the Lyapunov exponent may be quite conspicuous. A sim
dissipative modification of the model was considered too
is
er
s,
-

of
ll
-
in
le
d

it was demonstrated that this generalization actually amou
to a special case of the conservative model.
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